
Lokesh Pawar et al Int. Journal of Engineering Research and Applications                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 5( Version 6), May 2014, pp.76-80 

 www.ijera.com                                                                                                                                76 | P a g e  

 

 

 

Specialized Hardware Architecture for Smartphones  
 

Rohit Kumar, Lokesh Pawar, Anurag Aggarwal 
Assistant. Professor, Chandigarh University, Gharuan, (Mohali) 

Assistant Professor, Chandigarh University, Gharuan, (Mohali) 

Assistant Professor, Chandigarh University, Gharuan, (Mohali) 

 

Abstract 
Smartphones provides us the capability of a typical computer with absolute mobility and small form factor. But 

the hardware, software architecture of smartphone is significantly different from the conventional hardware and 

software architectures. The feature and architecture of the processors is totally different the traditional processor 

as these processors are developed to cope-up with fewer energy availability with smartphones or any other ultra 

portable devices.   

Key-Words: Smartphone development issues, smartphone processor architecture, specialized processor 

architecture, hardware, software development issues of Smartphones. 

 

I. Introduction 
The processor architecture of conventional 

processor is not suitable for smartphones as 

conventional processor consumes very high energy. 

We need some specialized processor architecture to 

work with energy starved “samrtphones”. This is 

what that has been discovered in this research paper 

The problem of utilization wall, dark silicon, 

(discussed later) hardware reconfiguration with code 

change has been the inspiring factors for carrying out 

this research work. All of these have been major 

factors now a days for all type of microprocessor 

based electronic projects and products which requires 

extensive and real time and mobile computational 

power.  Beside this efforts have been made to reduce 

the communication overhead in major sections of 

code by designing specialized hardware and to 

reduce the fetch decode cycle by large extent. It has 

been proved in recent researches that reducing these 

two types of communication delays and by tackling 

the problem of dark silicon will improve power 

efficiency by 7x to 1000x. 

This research work has tried to leverage the 

problem of dark silicon to attain efficiency and 

prolonged battery life by introducing an efficient and 

powerful processor. Focus has been laid on reduction 

in communication delays in processor design.  The 

proposed processor design and architecture fulfills 

the research objective.  

 

II. Approach Used for Development 
Top down approach has been used for the 

design of the concerned hardware. Initially broader 

architecture has been proposed, which is later refined 

and elaborated in detail. When the real 

manufacturing will be done the reverse methodology 

need to be followed although the real manufacturing 

details are out of scope from this research work. 

Before introducing the architecture of the system one 

must know the terms namely utilization walls and 

dark silicon which form the base of the research 

carried out. 

 

III. Utilization Wall 
The concept of utilization states that with 

each new process generation the number of transistor 

that can be switched on full frequency drops 

exponentially due to power constraints. Due to this a 

large portion of chip area is not utilized. So a narrow 

wall is created that separates the used and unused 

portion of the silicon chip, this separation wall or 

boundary is called utilization wall.  According to 

Moore‟s law the number of transistor grows 

exponentially with each passing year.  This law has 

been true from the past many decades but due to 

power constraints people are not able to operate this 

transistor count at full frequency which results in 

under utilization. This problem of under utilization 

has been tackled in this research work.  

In 1965 Gordon E. Moore, presented a law, 

this law is the observation that over the history of 

computing hardware, the number of transistors on 

integrated circuits doubles approximately every two 

years. But since the breakdown of Dinnard theory [7] 

this law no longer holds for latest ultra scale 

integrated circuits. Dennard‟s scaling rules observe 

that voltage and current should be proportional to the 

linear dimensions of a transistor, implying that power 

consumption (the product of voltage and current) will 

be proportional to the area of a transistor. This 

property implies that shrunk MOSFETs, CMOS will 

consume less power, and formed the basis of Moore's 

Law. But this scaling theory had failed and led to 

multi-core architectural designs for processors. It 

happened because the power resources remained 

same and are not able to switch the chip at full 

RESEARCH ARTICLE                                          OPEN ACCESS 

http://en.wikipedia.org/wiki/History_of_computing_hardware
http://en.wikipedia.org/wiki/History_of_computing_hardware
http://en.wikipedia.org/wiki/History_of_computing_hardware
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Integrated_circuit
http://nick-black.com/dankwiki/index.php/Moore%27s_Law
http://nick-black.com/dankwiki/index.php/Moore%27s_Law
http://nick-black.com/dankwiki/index.php/Moore%27s_Law


Lokesh Pawar et al Int. Journal of Engineering Research and Applications                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 5( Version 6), May 2014, pp.76-80 

 www.ijera.com                                                                                                                                77 | P a g e  

frequency. It has been observed that Although a 

fixed-size chip‟s computing capabilities continue to 

increase exponentially at 2.8x per process generation 

owing to both increases in maximum transistor count 

(2.x) and improved transistor frequencies (1.4x), the 

underlying energy efficiency of the transistors is only 

improving at a rate of about 1.4x. Because they must 

adhere to exploit these improved capabilities to the 

extent they are matched by an equivalent 

improvement in energy efficiency. The short-fall of 

2x per generation is the cause of the utilization wall, 

and leads to the exponentially worsening problem of 

dark silicon. 

The utilization wall problem is already 

apparent indirectly through the product lines of major 

processor manufacturers. Processor frequencies 

haven‟t increased for almost half a decade, and the 

number of cores on a chip hasn‟t been scaling at the 

same rate as the increase in the number of transistors. 

An increasing percentage of each chip is being 

dedicated to cache or low-activity logic such as 

memory controllers and portions of the processor‟s 

chipset. Recently, Intel‟s Nehalem architecture has 

featured a Turbo Boost mode that runs some cores 

faster if the others are switched off. All of these 

observations shows that the utilization wall is 

strongly shaping the evolution of processor designs. 

CMOS scaling theory indicates that things are going 

to get exponentially worse. Future architectures that 

try to maximize the benefit due to new process 

generations will need to be consciously designed to 

leverage many transistors, in a way that uses only a 

tiny fraction of them at a time. The proposed 

design‟s conservation cores have these exact 

properties and can be used to relax the utilization 

wall‟s extreme power constraints. 

 

IV. Dark Silicon 
The portion of silicon chip that can-not be 

utilized due to some reason is called dark silicon.  

Dark silicon can appear for different reasons e.g. if a 

chip is not programmed properly or lack of energy to 

switch transistors. The existence of dark silicon due 

to power constraints has been the factor studied and 

resolved in this research work. In addition to this 

specialized conservative has been presented which 

has tried to eliminate the problem of „Dark Silicon‟. 

 

V. Proposed Architecture 
Figure 1.1 presents the proposed 

architecture. Each of the major block and 

components in the proposed architecture has been 

explained in detail in rest of the chapter. 

 

 
Figure 1.1.:  Architecture Running multiple 

protocol stacks. 

 

1.6.1 Cores/Processors and Corresponding 

Protocol Stack  

Each of the major core is an independent 

multi-core processor with many number of energy 

aware conservative cores. Each of the cores will run 

a Specific Mobile OS. e.g. the first core is running 

Android Protocol Stack, other cores are running 

Symbian, Blackberry, Windows and respectively and 

one core reserved for future use. Each core is tailored 

according to the OS to be used. The conservative 

cores inside each core can configured for any specific 

code. Conservative cores are used to run some 

specialized piece of code and the code that also runs 

frequently.  Also, the cores can be reconfigured as 

the code changes. Each core/processor has 

conservative cores of various sizes to best fit the 

code of various sizes and complexity. 

 

1.6.2 Unified Graphic Rendering Protocol 

Each of the mobile platform has its own 

graphic rendering mechanism, so one need to have a 

common graphic rendering mechanism that will 

adapt according to the mobile platform used (i.e. the 

core being used or when multiple cores are being 

used).  

Since multiple core executes multiple 

software stacks and each software stack has its own 

graphic rendering mechanism, so each must be 

implemented carefully and specifically. With this 

specialized hardware is used for implementing 

graphic rendering and graphic library functions for 

all platforms. This increases the complexity of the 

problem. In the presented model situation is more 

grave as multiple graphic rendering mechanisms 

need to be implemented and each needs its own 

specialized hardware as well. Actual implementation 

of graphic rendering mechanism is outside the scope 

of this research work.    

 



Lokesh Pawar et al Int. Journal of Engineering Research and Applications                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 5( Version 6), May 2014, pp.76-80 

 www.ijera.com                                                                                                                                78 | P a g e  

1.6.3 Architecture of Single Core  

Figure 1.2 describes the detailed 

architecture of each core used in the proposed model 

(Figure 1.1). Each core consists of array of tiles. 

Each tile of the processor is a full-fledged processor 

with a set of conservative cores. Number of 

conservative core in a processor can vary from 8 to 

90. Each tile implements code specific to one or set 

of applications which are closely related and each 

conservative core within each tile is supposed to run 

some specialized code from the concerned 

applications. Tiles are chosen according to the 

application type and requirement. If an application 

has many modules then tile with large number of 

cores will be preferable and will be chosen 

automatically by the application.  

 
Figure 1.2.: Array of 16 processing units. 

 

Figure 1.3 shows components of a single tile 

and each of these tile is a full fledged processor in 

itself. Each tile has on chip network (OCN), 

instruction cache, data cache and number of 

conservative cores. Size of cores and number of 

cores will vary from tile to tile. All conservative 

cores are tightly connected with the data cache for 

communication.  

C-cores featured here are size variant and 

comes for different sized codes. The data cache or L1 

is tightly integrated with the cores and provides very 

tight integration among them. All sort of data 

communication is done through this data cache. 

Since a single core has sixteen different tiles in a 

core and each core also have sixteen different L1 

data cache and all of these caches must be kept 

consistent with each other. To bring consistency 

directory based cache coherence protocols have been 

used. 

When the full system executes only few 

cores are active in execution at any moment of time 

so the problem of utilization wall is contained. Due 

to specialized nature of conservative cores these c-

cores consumes very little energy which has been 

utilized in the presented model. 

 
Figure 1.3.: Component of each tile 

 

A translation look-aside buffer (TLB) is a 

cache memory management hardware uses to 

improve virtual address translation speed. All current 

desktop, notebook, smartphones and server 

processors use a TLB to map virtual and physical 

address spaces, and it is nearly always present in any 

hardware which utilizes virtual memory. Each tile in 

the architecture has its dedicated TLB.  

The TLB is typically implemented as 

content-addressable memory (CAM). The CAM 

search key is the virtual address and the search result 

is a physical address. If the requested address is 

present in the TLB, the CAM search yields a match 

quickly and the retrieved physical address can be 

used to access memory. This is called a TLB hit. If 

the requested address is not in the TLB, it is a miss, 

and the translation proceeds by looking up the page 

table in a process called a page walk. The page walk 

is an expensive process, as it involves reading the 

contents of multiple memory locations and using 

them to compute the physical address. After the 

physical address is determined by the page walk, the 

virtual address to physical address mapping is 

entered into the TLB. 

Figure 1.4 presents the detailed architecture 

of each tile. It has been observed during trials that c-

cores consume 18 times less energy on average than 

conventional processor. C-cores comprise most of 

the execution area so only very small code executes 

on general CPU. Power gating and clock reduction 

techniques are used to minimize the power 

consumption. Power gating disconnects the cores 

those are not used in present computation to save lots 

of energy. Clock reduction is used to reduce power 

consumption when only is being used for 

computation. When large code is executed clock 

frequency is increased for efficient computations.   

 

1.6.4 Cache Coherence  

Each tile or node shares its cache memory 

with other tiles this leads to the problem of cache 

coherence. Cache coherence implies that each node 

or tile must be given updated copy of the data 

modified in other cache. If an old value will be given 

to the requesting node then it will result in 



Lokesh Pawar et al Int. Journal of Engineering Research and Applications                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 5( Version 6), May 2014, pp.76-80 

 www.ijera.com                                                                                                                                79 | P a g e  

inconsistent computation and thus incorrect 

information will be represented by the system. In the 

present model directory based cache coherence 

protocol has been used. In this protocol each node 

maintains a directory of the items under its cache 

memory in the form of bit vectors. If a request comes 

and node contains updated copy of the item then it 

responds with the data item. But in case if the data 

item has been modified by any other node than it 

forwards the request to that node and modifies its 

own cache as well.  

 

1.6.5 Conservative Cores  

As already mentioned each tile has 

conservative cores of various sizes and each chip 

contains 8 to 90 conservative cores. Idea behind 

keeping different sized core is to use them for 

different sized code modules. Small code will be 

placed on small cores and big cores will be used for 

larger code. 

Automated tool exists that finds out the 

appropriate cores for different application. These 

cores can also be reconfigured to accommodate code 

changes and new applications can be installed on 

them with ease.  

 
Figure 1.4.: Architecture of Each Tile. 

 

1.6.6 Fine Grained Conservative Cores 

When many small sized c-cores exist in the 

system then the system is said to be a fine grained 

CPU and has been used in the proposed architecture. 

By the use of fine grained c-cores majority of the 

system code can be synthesized in c-cores and during 

execution c-cores span up to 90 % of execution time. 

Use of extremely large number of c-cores is not 

recommended and is not possible either as they 

increases the communication load on the processor 

and performance degradation occurs. This problem is 

also known as multi-processor scaling problem. Due 

to this the processor chip area must not be divided 

into very large number of c-cores. 

 

1.6.7 Energy Savings Achieved by the Use of C-

Cores 

It is the use of conservative cores that brings 

lots of energy savings. Conservative cores contains 

hardwired synthesized version of the software code. 

Due to hardwired implementation of the code, fetch-

decode cycle for executing instruction is eliminated, 

data path communication overhead is also eliminated 

and there is no requirement of register file and 

instruction cache at all, as all the operands and data 

are directly embedded into hardwired logic except 

data supplied by user while executing an application.  

Table 3.1 presents the energy savings 

obtained by the use of conservative cores. 

Conservative cores just need to interact with data 

cache which amounts to only six percent of the total 

energy consumed by the baseline CPU. In contrary to 

it conventional baseline CPU consumes lots of 

energy in fetch-decode cycle which amounts to 19 % 

of energy consumption, maximum energy is wasted 

in data path communication which consumes 38 % of 

the energy, with this instruction cache consumes lots 

of energy amounting to 23 %, followed by register 

file with 14 % percent energy consumption. 

In conservative cores energy is consumed 

by data cache only, rest of the factors has been 

eliminated in conservative cores which results in 

very high energy savings and these energy savings 

needs to be capitalized to make a very efficient 

processor design. In this research work these saving 

have been capitalized to make the proposed 

processor prototype and to achieve the desired 

objectives.  

Factors 

Energy 

consumed 

in Baseline 

CPU (%) 

Energy 

Consumed 

in C-Core 

(%) 

D-Cache 6 6 

I-Cache 23 NIL 

Fetch/Decode 19 NIL 

Register File 14 NIL 

Data Path 38 NIL 

 

Table 1.1.: Energy Consumption Comparison in 

Baseline CPU and C-cores. 

 

1.6.8 C-core Mimics Software Code 

C-cores actually mimics the software code 

that is synthesized on it. During synthesis all of the 

instruction given in the program are hardwired in c-



Lokesh Pawar et al Int. Journal of Engineering Research and Applications                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 5( Version 6), May 2014, pp.76-80 

 www.ijera.com                                                                                                                                80 | P a g e  

cores with all associated operands. E.g Consider the 

following for loop: 

 

  for ( i=0; i<=10; i++) 

     { a=a+i; 

     } 

 

Figure 1.5 presents an abstract hardware 

synthesis of the for loop. The variable (i) used in the 

loop has taken the shape of a fixed register of four 

bits, and will be initialized with 0, the comparison in 

the for loop has been replaced by a fixed logic 

comparator, addition had been implemented by the 

adder circuit, the parenthesis are implied by the 

arrow among the for loop components. One more 

register names (a) will be created to hold the value of 

variable (a). The number of bits taken by the (a) 

register will be determined by the initial value of (a) 

and plus execution of for loop.  

 

VI. Execution Model 
Automated tools are used to profile work 

load. At design time, automated tool clusters c-cores 

on the basis of profiling of typical  

 
Figure 1.5 Synthesis of for loop in c-core. 

 

Smartphone work-loads, examining  both 

control flow and data movement between code 

regions. It places related c-cores on the same or 

nearby tiles, and in some cases, replicates them. At 

runtime, an application starts on one of the general 

purpose CPUs, and whenever the CPU enters a hot-

code region, transfers execution to the appropriate c-

core. Execution moves from tile to tile on the basis of 

the applications that are currently active and the c-

cores they use. Coherent caches let data be 

automatically pulled to where it‟s needed, but data 

associated with a given c-core will generally stay in 

that c-core‟s L1 cache. 

 

VII. Conclusion 
The proposed prototype has been designed 

to obtain lots of energy savings over conventional 

processor design. The proposed prototype efficiently 

reduces the impact of dark silicon and utilization 

wall. Conservative cores have been introduced which 

are actually responsible for removing the problem of 

utilization wall and dark silicon. 

Each processor tile contains variant number 

of conservative cores and has all other circuitry like 

general CPU, instruction cache and data cache etc. 

for executing any kind of software code. 

Identification of hot code is must for achieving good 

efficiency and power savings. Automated tools must 

have to be used as manual synthesis is not possible 

for large code bases. Work is being done on 

optimization of automated tools to gain maximums 

efficiency.  

Actual synthesis is also very difficult as the 

prototype needs very large area. The tools like 

verilog must be programmed carefully and must be 

thoroughly tested for good synthesis. 

 

References 

[1]  Mombert, G., http://www.digitaltrends.com/ 

mobile/what-is-asmartphone/ [online], last 

seen dec, 2010. 

[2].  Johnny John and Chris Riddle, “Smartphone 

Power”, proceedings  of DAC, Anaheim, 

California, USA,  pp. 935-936, 2010. 

[3].  Vinay Mehta, http://berylsystems.com/smart 

phone.pdf [online], seen oct, 2010.   

[4].  Steven Cavanagh and Yingxu Wang, “Design 

of a Real-Time Virtual Machine (RTVM)”, 

proceedings of Electrical and Computer 

Engineering 2005 Canadian Conference,    pp. 

2021-2024, May, 2005. 

[5].  Omar A. Fres and Ignacio G. Alonso, “Rovim: 

A Generic and Extensible Virtual Machine for 

Mobile Robots”, Fifth International 

Conference on Systems held in USA, pp. 37-

40, 2010. 

[6].  Michael Bedford Taylor, “The Raw 

Microprocessor: A Computational Fabric For 

Software Circuits And General-Purpose 

Programs”, IEEE proceedings, pp. 24-35, 

2002. 

[7].  Robert H. Dennard, “Design of lon-Implanted 

MOSFET's with Very Small Physical 

Dimensions”, IEEE Journal of Solid-State 

Circuits, vol. SC-9, pp. 256-268, October 

1974. 

[8].  Asaf Ashkenazia, Dimitry Akselrodb and 

Yossi Amona, “Platform Independent Overall 

Security Architecture in Multi-Processor 

System-on-Chip ICs for Use in Mobile Phones 

and Handheld Devices”, proceedings of World 

Automation Congress (WAC), vol.33, issue 

no.5-6, pp. 407-424, 2007. 

 [9].  Meira Levy, Peretz Shoval, Bracha Shapira, 

Aviram Dayan and  Meytal Tubi, “Task 

Modeling Infrastructure for Analyzing 

Smartphone Usage” Ninth International 

Conference on Mobile Business / 2010 Ninth 

Global Mobility Roundtable,  pp.264-271, 

2010. 

http://www.digitaltrends.com/%20mobile/what-is-asmartphone/
http://www.digitaltrends.com/%20mobile/what-is-asmartphone/
http://www.digitaltrends.com/%20mobile/what-is-asmartphone/
http://berylsystems.com/smart%20phone.pdf
http://berylsystems.com/smart%20phone.pdf
http://berylsystems.com/smart%20phone.pdf

